Joel Peterson – Crypto Swap Profits Mastermind

15,272

Category:

Terry Benzschawel – Natural Language Processing in Trading

Description of Natural Language Processing in Trading
If you are looking to trade based on the sentiments and opinions expressed in the news headline through cutting edge natural language processing techniques, this is the right course for you. Learn to quantify the news headline and add an edge to your trading using powerful models such as Word2Vec, BERT and XGBoost.
LIVE TRADING

Train a machine learning model to calculate a sentiment from a news headline
Implement and compare the word embeddings methods such as Bag of Words (BoW), TF-IDF, Word2Vec and BERT
Predict the stock returns and bond returns from the news headlines
Describe the applications of natural language processing
Automate and paper trade the strategies covered in the course
Fetch the recent news headline data
Implement strategies in the live markets and analyze the performance

SKILLS COVERED
Predictive Modelling

Supervised Learning
XGBoost Model
Train and Test Datasets
Corporate Bonds returns
Stock Returns, Sharpe ratio

Word Embeddings

Bag of Words
TF-IDF
Word2Vec
BERT

Python

Numpy
Pandas
XGBoost
Matplotlib
CountVectorizer

PREREQUISITES
Basic familiarity with machine learning concepts such as training, testing, features and target variables is required. Exposure to programming concepts is required to interpret the codes covered in the course. However, experience with Python coding knowledge is optional. If you want to be able to code and implement the strategies in Python, you should be able to work with ‘Pandas Data frames’. All the required skill sets are covered in the foundation courses available in the learning track.
What will you learn in Natural Language Processing in Trading?
Natural Language Processing in Trading by Dr. Terry Benzschawel,what is it included:

Section 1: Introduction to the Course
Section 2: Applications of Natural Language Processing
Section 3: Sources of News Headline Data
Section 4: Sentiment Score and Strategy Logic
Section 5: Sentiment Strategy on Stocks
Section 6: Sentiment Strategy on Bonds
Section 7: Introduction to Word Embeddings
Section 8: Bag of Words
Section 9: Predicting Sentiment Score Using XGBoost
Section 10: Sentiment Class of News Headlines
Section 11: TF-IDF
Section 12: WordVec
Section 13: BERT
Section 14: BERT Model Adaptation
Section 15: Result Analysis
Section 16 (Optional): Python Installation
Section 17: (Optional): Live Trading on IBridgePy
Section 18: Paper and Live Trading
Section 19: Capstone Project
Section 20: Course Summary

About Terry Benzschawel

Dr. Terry Benzschawel is the founder and Principal at Benzschawel Scientific, LLC. Before that, Terry had worked with Citigroup’s Institutional Clients Business, as a Managing Director, heading the Quantitative Credit Trading group. In Citi’s Fixed Income Strategy department, Terry has worked as a credit strategist with a focus on client-oriented solutions across all credit markets. Before that, he had worked in Chase Manhattan and Citi to build algorithms to predict corporate bankruptcy and to detect credit fraud on card transactions. He has authored two books on Credit Modeling.

113
    113
    Your Cart
    Dodgy s Ultimate Trading Remove
    Dodgy s Ultimate Trading
    1 X 9,794 = 9,794
    BnfTv Youtube Course Remove
    BnfTv Youtube Course
    3 X 150 = 450
    Afshin Taghechian – Complete Times Course Remove
    Commando Trader Complete Course Remove
    Commando Trader Complete Course
    2 X 4,000 = 8,000
    Anthony Aires – Speed Ranking System Remove
    Brian Coyle – Currency Options Remove
    Brian Coyle – Currency Options
    3 X 4,000 = 12,000
    Smart Google Traffic (2023) Remove
    Smart Google Traffic (2023)
    2 X 150 = 300
    D.E.Moggridge – Maynard Keynes Remove
    D.E.Moggridge – Maynard Keynes
    1 X 4,000 = 4,000
    Affiliate World Dubai 2022 Remove
    Affiliate World Dubai 2022
    2 X 4,000 = 8,000
    Andrew Tate – Courses Bundle 2021 Remove
    Andrew Tate – Courses Bundle 2021
    3 X 4,000 = 12,000
    Mobile Marketing Masterclass 2023 Remove
    Body Bare BioHIIT Workout Program Remove
    Body Bare BioHIIT Workout Program
    1 X 1,500 = 1,500
    Boomerang Day Trader (Sep 2014) Remove
    Boomerang Day Trader (Sep 2014)
    1 X 4,000 = 4,000
    Youtube Seo Secrets 2023 (2023) Remove
    PLFCrypto – US30 Bootcamp Remove
    PLFCrypto – US30 Bootcamp
    2 X 9,794 = 19,588
    Auto TrendMaster 2 (ment.com) Remove
    Auto TrendMaster 2 (ment.com)
    2 X 4,000 = 8,000
    ChatGPT Mastery Course (2023) Remove
    ChatGPT Mastery Course (2023)
    1 X 350 = 350
    Find Hot & Viral Shopify Dropshipping Products Remove
    2015 Tribe Conference: 2 Day Live Event Remove
    Ultimate Edit Course By Nitish Kunwar Remove
    Jimmy D. Brown Infoproduct Pipeline Remove
    Jimmy D. Brown Infoproduct Pipeline
    1 X 1,660 = 1,660
    Alex Becker – Hero Tower Remove
    Alex Becker – Hero Tower
    2 X 4,000 = 8,000
    Adam Payne – The Affiliate Oracle Remove
    Adam Payne – The Affiliate Oracle
    2 X 4,000 = 8,000
    ClickBank University Remove
    ClickBank University
    2 X 4,000 = 8,000
    Alexander R.Margulis – The Road to Success Remove
    L. Michael Hall – Unleashed Remove
    Cory Richards – Adventure Storytelling Remove
    Adina Rivers – Pussy Massage Course Remove
    Eric Thompson – Shilajit Remove
    Alexander Chase – The Free Drink Phenomenon Remove